

# Gas Dehydration with PELADOW DG Calcium Chloride



# Table of Contents

| Secti | Page                            |    |
|-------|---------------------------------|----|
| I.    | Introduction                    |    |
| II.   | PELADOW DG Calcium Chloride     | 6  |
| III.  | Process Considerations          |    |
| IV.   | Humidity Calculations           | 14 |
| V.    | Equipment Design and Evaluation | 16 |
| VI.   | Safety Precautions              | 23 |
| VII.  | Disposal of Solutions           |    |
| VIII. | Bibliography                    | 25 |
| IX.   | Appendix                        |    |

# Figures

| 1.  | Pure Calcium Chloride Phase Diagram                                                   | 7  |
|-----|---------------------------------------------------------------------------------------|----|
| 2.  | Crystallization Temperatures of CaCl <sub>2</sub> - Water System                      | 9  |
| 3.  | Calcium Chloride Dehydrator                                                           | 11 |
| 4.  | Tray Calculation - Example 2                                                          | 21 |
| 5.  | Dühring Plot for CaCl <sub>2</sub> Solutions                                          | 28 |
| 6.  | Vapor Pressures of CaCl <sub>2</sub> Hydrates                                         | 29 |
| 7.  | Water Content of Natural Gas in Equilibrium With CaCl <sub>2</sub> •H <sub>2</sub> O  | 30 |
| 8.  | Water Content of Natural Gas in Equilibrium With CaCl <sub>2</sub> •2H <sub>2</sub> O | 31 |
| 9.  | Water Content of Natural Gas in Equilibrium With CaCl <sub>2</sub> •4H <sub>2</sub> O | 32 |
| 10. | Water Content of Natural Gas in Equilibrium With CaCl <sub>2</sub> •6H <sub>2</sub> O | 33 |
| 11. | Water Content of Saturated Air                                                        | 34 |
|     |                                                                                       |    |

# Tables

| 1. | Typical Physical Properties of PELADOW DG                     | 6    |
|----|---------------------------------------------------------------|------|
| 2. | Properties of Calcium Chloride Hydrates                       | 8    |
| 3. | Effect of Pressure Upon Dew Point                             | 15   |
| 4. | Maximum Dehydrator Capacities in MMCF/D at 14.7 psia and 60°F | 16   |
| 5. | Equilibrium Line Calculation for Example 2                    | 19   |
| 6. | Equilibrium Moisture Content of Natural Gases                 |      |
|    | Above the Critical Temperature                                | 5-27 |
|    |                                                               |      |

# I. Introduction

As the need for domestic natural gas increases, calcium chloride dehydration can help make certain wellheads more profitable to operate. Gas from remote or offshore wellheads, gas of a low flow rate, or gas which is high in sulphur content may benefit from dehydration with PELADOW\* DG calcium chloride.

The size and almond shape of these briquettes minimize bridging and channeling that can occur during unexpected changes in the gas composition, gas flow, or ambient conditions. The almond shape also minimizes pressure drop, which is critical in wellhead operations.

Calcium chloride is an excellent desiccant which, as it passes from a solid to a liquid state, can absorb more than 3.5 times its weight in water. Even in its liquid state as a brine, the chemical continues to absorb water at significant rates.

# The four advantages of calcium chloride dehydrators

- 1. *Energy efficient*—No energyconsuming equipment is part of the basic design of a calcium chloride dehydrator. In locations of extreme cold, it may be necessary to incorporate a heating unit to maintain system temperature. But a calcium chloride unit consumes a fraction of the energy required by glycol units.
- 2. *Low labor costs*—Other than the recharging of the dry desiccant beds, calcium chloride dehydrators require little or no attention. They can function up to six months unattended.
- 3. *Reduced fire hazard*—Calcium chloride is not flammable, and the dehydration system requires no open flame.
- 4. *Competitive equipment costs* Calcium chloride dehydrators usually cost a fraction of comparatively sized glycol and molecular sieve dehydrator units.

\*Trademark of The Dow Chemical Company

# *Guidelines on when to consider calcium chloride debydration*

# **Operational Limits**

|                      | Glycol (TEG)                          | Calcium Chloride (CaCl <sub>2</sub> )      |
|----------------------|---------------------------------------|--------------------------------------------|
| Dew-point depression | 50-90°F: Greater dew-point            | 55-70°F: This range typically is           |
|                      | depressions achieved with             | sufficient to dry gas to the normal        |
|                      | additional trays, vacuum              | pipeline specification of 2-7 lbs          |
|                      | regeneration, or DRIZO process.       | H <sub>2</sub> O per 1 MMSCF.              |
| Feed gas pressure    | 300-3000 psig: TEG functions          | 125-3000 psig: Optimum                     |
|                      | well throughout this range but is     | performance occurs with pressures          |
|                      | exceptionally suited to lower         | greater than 700 psig. Desiccant usage     |
|                      | pressures.                            | increases as pressure decreases.           |
| Feed gas temperature | <b>40-100°F:</b> Temperatures greater | <b>40-100°F:</b> Temperatures greater than |
|                      | than 100°F require addition of        | 100°F usually require aerial coolers.      |
|                      | gas-stripping or DRIZO facilities.    |                                            |



|                    | Glycol (TEG)                                                                                                                                                                                                                                                                                                                                                                                                   | Calcium Chloride (CaCl <sub>2</sub> )                                                                                                                                                                                                                                          |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Remote locations   | The complexity of glycol<br>dehydrators, plus the fact that most<br>make use of an open flame, requires<br>supervision, safety, and maintenance<br>at remote locations—especially<br>offshore wellheads. Typically,<br>gas-glycol pumps, which significantly<br>increase operating costs, must be<br>used in regions with unreliable<br>electrical power.                                                      | The relative simplicity of the concept<br>and design of these units makes them<br>ideal in offshore and periodically<br>snowbound locations. Depending on<br>operating conditions, a large number<br>of calcium chloride units can be left<br>unattended for up to six months. |
| Low gas flow       | Flow rates lower than 300 Mscfd are<br>often accommodated by having a<br>single glycol unit service several<br>wellheads.                                                                                                                                                                                                                                                                                      | As long as pressure is sufficient,<br>calcium chloride units function especially<br>well at very low flow rates—from 50 to<br>20,000 Mscfd. Further, the lower the<br>flow rate, the longer a calcium chloride<br>unit can function unattended between<br>rechargings.         |
| Acidic conditions  | Acidic conditions in glycol result<br>from acid constituents of the natural<br>gas or through oxidation of the<br>glycol itself. Glycol oxidation is<br>normally well controlled in a<br>properly designed reboiler system.<br>But gas containing high proportions<br>of $H_2S$ in the presence of high<br>temperatures can result in the release<br>of pollutants into the atmosphere<br>during regeneration. | Calcium chloride is essentially non-reactive with $H_2S$ or $CO_2$ , and requires no special pretreatment of gases containing these acid constituents.                                                                                                                         |
| Salt contamination | Sodium chloride (NaCl) in the gas<br>remains a potential problem for<br>glycol dehydration units. An<br>improperly maintained inlet scrubber<br>or mist extractor could result in salt<br>crystallization in the heating tubes<br>and subsequent damage to the tubes<br>themselves.                                                                                                                            | Salt contamination is never a problem in calcium chloride units. Even if NaCl brine gets through the wellhead knock-out, it would be pushed down by the CaCl <sub>2</sub> brine dripping from the trays and is unlikely to ever reach the bed section.                         |

# II. PELADOW DG Calcium Chloride

PELADOW DG calcium chloride is an almond shaped, briquetted, 91% (min.) calcium chloride product that is specially designed to be used for dehydration of gas and liquid hydrocarbons.

# 1. Applications

PELADOW DG calcium chloride is used to dehydrate both gas and liquid hydrocarbons such as natural gas, LPG, kerosene, and diesel fuel. In addition to hydrocarbons, PELADOW DG has been used to dry chlorinated solvents and air.

The special design of PELADOW DG calcium chloride helps minimize the bridging and channeling in vessels that can occur with normal deliquescent salts.

Under most conditions, PELADOW DG calcium chloride is capable of absorbing about one pound of water per one pound of product in liquid hydrocarbon drying systems. For natural gas systems, depending on operating conditions and drier design, one pound of PELADOW DG can absorb 3.5 pounds of water.

## 2. Availability

PELADOW DG calcium chloride is available in 400 lb drums and 2100 lb sacks. Special packaging sizes may be available on request.

#### 3. Physical Properties

Table 1 presents some typical physical properties of PELADOW DG. In addition to its calcium chloride con-

tent, these are considered the most important properties relative to the use of PELADOW DG in dehydration applications.

Additional physical properties of PELADOW DG calcium chloride and solutions of calcium chloride are either found in other sections of this manual or in Dow's "Calcium Chloride Handbook." (Form No. 173-01534-396)

| Tab | le | 1 - | - Typical | l Physical | l Properties | of | PELADOW | DG |
|-----|----|-----|-----------|------------|--------------|----|---------|----|
|-----|----|-----|-----------|------------|--------------|----|---------|----|

| Typical Assay               | 91% - 92% calcium cloride                         |  |  |
|-----------------------------|---------------------------------------------------|--|--|
| Typical Assay               | 3 - 4% alkali chroides                            |  |  |
| Appearance                  | White almond shaped briquettes                    |  |  |
| Odor                        | None                                              |  |  |
| Briquette Size              | Approx. 0.7" thick at thickest point, 1.1" length |  |  |
|                             | 85% > 1/2 inch                                    |  |  |
| Sieve Analysis              | 94 - 100% > 1/4 inch                              |  |  |
| Bulk Density                | 60 - 68 lbs./cu. ft.                              |  |  |
| Briquette Density           | 1.86 - 1.88 g/cc                                  |  |  |
| Briquette Porosity          | 15 - 20%                                          |  |  |
| Bed Void Space (Loose Fill) | 45 - 50%                                          |  |  |
| Pressure Drop               | 0.01 to 0.1 psi/ft. of bed height                 |  |  |
| Angle of Repose             | 28°                                               |  |  |

# 4. Calcium Chloride Phase Diagram

Figure 1 is a portion of the phase diagram for pure calcium chloride. It shows that a number of hydrates of calcium chloride form during drying. It also shows the temperature limits for stability of various hydrates at a pressure of one atmosphere.





WEIGHT PERCENT CALCIUM CHLORIDE

# 5. Physical Properties of Hydrates

The physical properties of pure anhydrous calcium chloride and the hydrates of calcium chloride shown in Figure 1 are listed in Table 2. This data was compiled from the literature and files of The Dow Chemical Company. Note that the thermochemical values have negative signs when the process is exothermic, i.e., gives off heat. This convention follows present National Bureau of Standards practice. A positive sign or no sign indicates the process is endothermic, i.e., absorbs heat. Anhydrous calcium chloride and the lower hydrates emit a large amount of heat when dissolved in water; this may cause a temperature rise great enough to boil water and create a safety hazard.

| Table 2 – Properties of Calciu | ım Chloride Hydrates <sup>1, 3, 11</sup> |
|--------------------------------|------------------------------------------|
|--------------------------------|------------------------------------------|

| Property                                                                                     | CaCl <sub>2</sub> ·6H <sub>2</sub> O | CaCl <sub>2</sub> •4H <sub>2</sub> O | CaCl <sub>2</sub> ·2H <sub>2</sub> O | CaCl <sub>2</sub> ·H <sub>2</sub> O | CaCl <sub>2</sub> |  |
|----------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------|--|
| Composition (% CaCl <sub>2</sub> )                                                           | 50.66                                | 60.63                                | 75.49                                | 86.03                               | 100               |  |
| Molecular Weight                                                                             | 219.09                               | 183.05                               | 147.02                               | 129                                 | 110.99            |  |
| Melting Point <sup>1</sup> (°C)<br>(°F)                                                      | 29.9<br>85.8                         | 45.3<br>113.5                        | 176<br>349                           | 187<br>369                          | 772<br>1424       |  |
| Boiling Point <sup>2</sup> (°C)<br>(°F)                                                      |                                      |                                      | 174<br>345                           | 183<br>361                          | 1935<br>3515      |  |
| Density at 25°C (77°F), g/cm <sup>3</sup>                                                    | 1.71                                 | 1.83                                 | 1.85                                 | 2.24                                | 2.16              |  |
| Heat of Fusion (cal/g)<br>(Btu/lb)                                                           | 50<br>90                             | 39<br>70                             | 21<br>38                             | 32<br>58                            | 61.5<br>110.6     |  |
| Heat of Solution <sup>3</sup> in H <sub>2</sub> O (cal/g)<br>(to infinite dilution) (Btu/lb) | 17.2<br>31.0                         | -14.2<br>-25.6                       | -72.8<br>-131.1                      | -96.8<br>-174.3                     | -176.2<br>-317.2  |  |
| Heat of Formation <sup>3</sup> at 25°C (77°F), kcal/mole                                     | -623.3                               | -480.3                               | -335.58                              | -265.49                             | -190.10           |  |
| Heat Capacity at 25°C (77°F), cal/g (°F, Btu/lb)                                             | 0.34                                 | 0.32                                 | 0.28                                 | 0.20                                | 0.16              |  |
| <sup>1</sup> Incongruent melting point for hydrates.                                         |                                      |                                      |                                      |                                     |                   |  |

<sup>2</sup>Temperature where dissociation pressure reaches one atmosphere for hydrates.

<sup>3</sup>Negative sign means that heat is evolved (process exothermic).



Figure 2 – Crystallization Temperatures of CaCl<sub>2</sub> - Water System

The relationship between crystallization temperature and  $H_2O/CaCl_2$  ratio for solutions of pure  $CaCl_2$  is shown in Figure 2. These results can be used with little error as also indicated for PELADOW DG.

# **III. Process Considerations**

#### 1. Process Description

A typical calcium chloride dehydrator is shown in Figure 3. Our discussion will pertain to this specific type of equipment although PELADOW DG calcium chloride could also be used in other similar types of equipment.

Figure 3 shows how gas and liquids flow in the dehydrator. The unit is designed to take advantage of the excellent desiccant properties of PELADOW DG as a solid and in solution. The lower or separator section is a gas-liquid separator which separates free liquids, hydrocarbons and water, from the inlet gas stream. The middle or tray section is the liquid absorption section where the brine removes most of the water in a series of trays. The upper or bed section contains the solid PELADOW DG calcium chloride, which absorbs the final amount of water and furnishes the brine feed for the tray section.

#### A. Separator Section

Incoming wet gas and free liquids flow through the dehydrator from the bottom upward, passing through a liquid disengager, where the free liquids are removed. Any water and liquid hydrocarbons are discharged separately from the column. Gas free from entrained liquids now flows up to the tray section.

#### **B. Tray Section**

In this portion of the column, the concentrated brine dripping from the bed section absorbs water from the gas as it flows downward from tray to tray, countercurrent to the wet gas. Nozzles on each tray provide contact of the brine and gas in an intimate mixture. As the brine flows downward it is diluted continuously, and as the gas flows upward it is dehydrated. In a typical operation, approximately 70% of the water present in the gas is absorbed by the tray section and the brine is diluted to 20-25% calcium chloride. Brine leaving the tray section joins any free water that was present and is discharged from the column. The gas enters the bed section for final water removal.

#### **C. Bed Section**

PELADOW DG calcium chloride is a strong desiccant which consists primarily of anhydrous calcium chloride. In the solid state, calcium chloride in contact with water vapor forms four hydrates before being converted to a liquid solution. The concentrated brine that is formed still has much water-absorbing capacity, and this is the basis for operation of the tray section. When the gas leaving the top tray enters the bed section, it moves upward, first contacting brine on the briquette surfaces in the lower portion of the bed. As the gas moves upward through the bed section, it contacts successively drier and drier calcium chloride (lower hydrate states).

As the briquettes are consumed in the lower portion of the bed, the weight of the material above causes the bed to settle so that the bed level gradually diminishes as time progresses. Typically, the operation is continued until approximately two feet of briquettes remain in the bed. At this time, breakthrough (high outlet humidity) starts to occur, so the bed section is recharged with fresh anhydrous material.



Figure 3 – Calcium Chloride Dehydrator <sup>8</sup>

Using the approach described on page 10, up to  $3.5 \text{ lb H}_2\text{O/lb cal-}$ cium chloride can be absorbed. It is this high water-absorbing capacity, coupled with the lack of a requirement for regeneration equipment, that makes PELADOW DG calcium chloride so desirable for absorption of water from gas.

In some cases, however, it may be desirable to operate without trays. In this case, brine drips off the bed and is discharged without further contact with the entering gas. Then, approximately 1 lb H<sub>2</sub>O/lb calcium chloride is removed. The precise H<sub>2</sub>O/CaCl<sub>2</sub> ratio varies with the temperature of operation, since the brine dripping from the bed section is nearly saturated. Approximately the same outlet gas dew point or humidity will be achieved if the trays are not used. However, full utilization of the calcium chloride will not be realized when trays are not used.

### 2. Pressure Drop

For a unit containing both tray and bed sections, the normal pressure drop across the complete column is less than 8 psi.

# 3. Heat Effects

Under the normal temperatures (50-120°F) and pressures (300-3,000 psia) encountered, heat effects due to the heat evolved upon absorption of water vapor by calcium chloride are negligible. However, when a high temperature, low pressure gas is dehydrated, it may be desirable to check the heat effects.

## 4. Bridging and Channeling

# A. Bridging

The fusion or joining together of adjacent calcium chloride briquettes is known as bridging. Under normal operation, as the chemical is consumed the bed settles to a lower level. However, when bridging occurs, the bed may adhere to the sides of the column and the chemical will be consumed from the bottom up. This condition causes an erroneous bed level to be indicated and can cause some difficulty in determining when a unit needs recharging.

Bridging can be caused for a variety of reasons, most of them related to cyclic operating conditions. The following reasons can contribute to bridging:

• *Decrease in the bed temperature.* A decrease in the bed temperature can cause freezing of the concentrated brine that is in contact with the calcium chloride particles. Adjacent pellets are then fused into a solid calcium chloride bridge.

- *Removing the debydrator from service, leaving it idle; then placing it back in service.* This can cause bridging if there is a decrease in the bed temperature. Also, because water tends to diffuse from the saturated brine on the briquette surfaces into the briquettes, the brine tends to crystallize and bridge the adjacent pellets together.
- Wet gas in contact with bed section. A unit that is operating well below its rated capacity will allow a wetter gas to contact the bed section. This is due to poor brine/gas mixing on the trays, and the resulting inefficient dehydration. Then there will be more brine present on the briquettes in the bed section and, if an upset occurs, a worse case of bridging is likely to result. For this reason, dehydrators without brine trays are more prone to bridging problems than those that use trays.
- Free water in the bed section. If free water or dilute brine enters the bed section (by flooding because of too high a gas rate, for example), conditions are conducive to bridging. After the flooded condition is corrected, the bed will start to dry out and brine freezing on the briquettes can cause bridging.

In general, any condition that tends to dry the bed after it has been in a wetted condition can cause some degree of bridging. When bridging is observed, usually when the dehydrator is being recharged, the bed can be dropped by pouring water around the outer edge at the side of the vessel. Sometimes, manual assistance is required in dislodging the bed.

Fortunately, bridging by itself is not a serious problem. However, once a bed of calcium chloride is bridged, channeling can occur and this can affect dehydrator performance.

#### **B.** Channeling

Channeling usually takes place after bridging has occurred. In this case, the gas seeks the path of least resistance through the bed. Eventually a hole is developed through the bed due to the dissolution of the calcium chloride in this path. When channeling occurs, breakthrough (poor dew point depression) starts prematurely and this is good evidence that channeling has taken place.

When channeling has occurred, the dehydrator must be opened and the bed section redistributed by a procedure similar to that used for bridging.

Fortunately, the unique size and shape of PELADOW DG calcium choride typically prevent bridging and the associated channeling, making it the ideal choice when this dehydration technique is used.

# **IV. Humidity Calculations**

PELADOW DG is capable of drying natural gas under a wide variety of stream conditions to meet or exceed pipeline specifications. However, if calculating the humidity in dried gas is necessary, without going into the theoretical chemical calculations, the following equation can be used.

$$H = \frac{P_{CaCl_2} \times H_w}{P \text{ water}}$$
Where,

H = humidity of natural gas in equilibrium with  $CaCl_2$  solution or hydrate  $P_{CaCl_2}$  = vapor pressure of  $CaCl_2$  solution or hydrate at system temperature  $P_{water}$  = vapor pressure of pure water at system temperature  $H_w$  = humidity of natural gas saturated with water

Using the above formula, under normal operating conditions, and data found on water-gas, and water-calcium chloride equilibrium found in the appendix, water levels in dried natural gas can be easily calculated. Several examples using this formula for determining water content follow.

#### **Example calculations**

(1) 50 percent brine is in equilibrium with natural gas at 100°F and 1000 psi. What is the water content of the natural gas?

H = 
$$\frac{P_{CaCl_2}}{P_{water}}$$
 H<sub>w</sub> =  $\frac{0.21}{0.95}$  (60.4) = 13.3 lb H<sub>2</sub>O/MMCF at 14.7 psia and 60°F

(2) CaCl<sub>2</sub>•2H<sub>2</sub>O is in equilibrium with natural gas at 100°F and 1000 psia. What is the water content of the natural gas?

$$H = \frac{p_{CaCl_2}}{p_{water}} H_w = \frac{0.0455}{0.95} (60.4) = 2.89 \text{ lb } H_2\text{O}/\text{MMCF at } 14.7 \text{ psia and } 60^\circ\text{F}$$

Examples 1 and 2 illustrate the preferred method of calculating the humidity and dew point. The dew point achieved by a calcium chloride solution or hydrate is a function of pressure, so a plot of dew point versus contact temperature cannot be valid for all pressures. Table 3 compares the dew point achieved for the contact temperature of 100°F and for pressures of 14.7 and 1000 psia. For normal brine concentrations up to 50%, the dew point variation with pressure is small. However, the dew point variation is more pronounced as the concentration of the calcium chloride increases. If the dew point obtained at 14.7 psia were assumed constant and were used to calculate humidities at 1000 psia, significant errors could result. For instance, for calcium chloride dihydrate, an error in the humidity of approximately 45% would result and for a 50% brine, an error of approximately 6% would result.

For ease of use, the appendix contains water content of natural gas-calcium chloride solution/hydrate under a wide variety of temperature and pressure operating conditions.

Equilibrium water content of other gases, such as air, dried using PELADOW DG can also be calculated using the same formula outlined above.

|                                       | Contact Temperature = 100°F<br>Dew Point Achieved (°F) |           |  |
|---------------------------------------|--------------------------------------------------------|-----------|--|
| CaAl <sub>2</sub> Solution or Hydrate | 14.7 psia                                              | 1000 psia |  |
| 10% solution                          | 98.4                                                   | 98.4      |  |
| 20% solution                          | 94.1                                                   | 94.1      |  |
| 30% solution                          | 84.8                                                   | 84.4      |  |
| 40% solution                          | 70.7                                                   | 69.8      |  |
| 50% solution                          | 53                                                     | 51.2      |  |
| CaCl <sub>2</sub> •4H <sub>2</sub> O  | 41.2                                                   | 38.3      |  |
| CaCl <sub>2</sub> •2H <sub>2</sub> O  | 14.5                                                   | 9.3       |  |

Table 3 - Effect of Pressure Upon Dew Point

# V. Equipment Design and Evaluation

There are two types of equipment in use which may be defined according to the type of gas-CaCl<sub>2</sub> contacting employed.

- · solid bed only
- solid bed + trays

In this section, design methods are shown for these two types. Only that portion of the total design needed for clarity is provided. Insulation and heating to prevent freeze-ups in cold weather, total column height determination, hardware details, etc., are not included. Persons requiring information of this nature are directed to the appropriate equipment manufacturer. Two types of problems are of concern. The first is the design of a dehydrator for a given set of conditions, the second is the performance evaluation of an existing dehydrator.

#### 1. Solid Bed Dehydrator

In a unit that employs a solid bed, the outlet humidity obtained will vary with time. Initially, a low humidity will be obtained. Over a period of several hours, the outlet humidity will rise to a nearly steady-state value which is maintained until the bed level drops to about two feet. Then breakthrough will occur and the unit must be charged with a new supply of PELADOW DG calcium chloride. The maximum gas velocity in the bed section is limited by entrainment considerations. If the velocity is too high, entrainment may be excessive, and in extreme cases all brine that is formed may be carried overhead with the gas. Table 4, based upon entrainment considerations, gives the maximum allowable gas rates for the bed section of dehydrator columns.

The outlet humidity after steadystate has been reached may be determined by assuming that the gas is in equilibrium with CaCl<sub>2</sub>•4H<sub>2</sub>O. This is a conservative rule-of-thumb that has been determined by lab experiments and also field experience. Figure 9 gives the humidity of natural gas in equilibrium with CaCl<sub>2</sub>•4H<sub>2</sub>O. For temperatures above 113.5°F, the extrapolated values at 120, 130, and 140°F in Figure 9 may be used as a rough guide to the outlet humidities at these temperatures. This same outlet humidity will be achieved if there are trays below the bed section also.

| Table 4 – Maximum Dehydrator | Capacities in MMCF/D at 14.7 |
|------------------------------|------------------------------|
| psia and 60°F                |                              |

|                 |      | Diameter (in.) |      |
|-----------------|------|----------------|------|
| Pressure (psia) | 20   | 24             | 30   |
| 100             | 1.9  | 2.7            | 42.  |
| 250             | 3.0  | 4.3            | 6.6  |
| 500             | 4.2  | 6.0            | 9.4  |
| 750             | 5.1  | 7.4            | 11.5 |
| 1000            | 5.9  | 8.5            | 13.3 |
| 1200            | 6.5  | 9.4            | 14.5 |
| 1500            | 7.2  | 10.5           | 16.3 |
| 2000            | 8.3  | 12.1           | 18.8 |
| 2500            | 9.3  | 13.5           | 21.0 |
| 3000            | 10.2 | 14.8           | 23.0 |

For other diameters,  $C = C_t (\frac{D}{D_t})^2$ ,

where C = capacity, D = diameter, and the subscript "t" refers to an entry in the above table at the same pressure.

The following example illustrates the design procedure for a solid bed dehydrator.

# **Example 1**

It is desired to dehydrate a natural gas stream saturated with water vapor.

Gas Rate: 4 MMSCF/D Temperature: 80°F Pressure: 1000 psia

Recharging PELADOW DG calcium chloride is desired no more frequently than every 15 days and a solid bed operation will be used. What diameter should the column be and what will the outlet humidity be?

### **Gas Humidity**

Normally the inlet gas is assumed to be saturated with water. Sometimes, this is not the case and then the actual inlet humidity should be used.

```
Inlet - 33.6 lb H_2O/MMSCF from Table 6
Outlet - 4.2 lb H_2O/MMSCF from Figure 9
```

#### Water Removed

(33.5-4.2) lb H<sub>2</sub>O/MMSCF x 4 MMSCF/D = 117.2 lb H<sub>2</sub>O/day

### Amount of PELADOW DG Required

Assume saturated brine at 80°F drips from the bed. From Figure 2, the brine contains about 1.1 lb  $H_2O/lb$  CaCl<sub>2</sub>.

As stated in Section II, PELADOW DG contains a minimum of 91% CaCl<sub>2</sub>.

 $\frac{117.2 \text{ lb } \text{H}_2\text{O}/\text{day x 15 days}}{(1.1 \text{ lb } \text{H}_2\text{O}/\text{lb } \text{CaCl}_2) (0.91 \text{ lb } \text{CaCl}_2/\text{lb } \text{PELADOW DG}} = 1756 \text{ lbs PELADOW DG}$ 

Per Table 1, the bulk density is about 65 lb/ft<sup>3</sup>, so 27 ft<sup>3</sup> of PELADOW DG will be required.

### Column diameter and bed height

Assume 20" column: 2.182 ft<sup>3</sup>/ft of height. The allowable gas rate from Table 4 is 5.9 MMSCF/day, so this is acceptable.

Bed Height = 
$$\frac{27 \text{ ft}^3}{2.182 \text{ ft}^3/\text{ft}}$$
 + 2 ft = 14.4 ft

The bed will be recharged when it reaches two-foot level.

### 2. Solid Bed + Tray Dehydrator

The outlet humidity from the dehydrator is still found from Figure 9 as in the solid bed unit. To determine the number of trays required, some graphical calculations must be made. A water material balance relating the amount of water in the gas leaving the column to the amount of water in two passing internal streams in the tray section results in the operating line equation.

$$X_n = \frac{V}{L} H_n + 1 - \frac{V}{L} H_o$$

In this equation

$$\begin{split} X_n &= lb \; H_2O/lb \; CaCl_2 \; leaving the \; n^{th} \; tray \\ H_n + 1 &= lb \; H_2O/MMSCF \; leaving the \; n + 1^{st} \; tray \\ L &= CaCl_2 \; rate \; (lb/time) \; (anhydrous \; basis) \\ V &= gas \; rate \; (MMSCF/time) \\ H_o &= outlet \; gas \; humidity \; (lb \; H_2O/MMSCF) \end{split}$$

The equilibrium line is calculated by methods introduced previously.

| % CaCl <sub>2</sub> | (lb H <sub>2</sub> O)<br>lb CaCl <sub>2</sub> | Temp. at which Solution<br>has the Same Vapor<br>Pressure as Water (°F) | CaCl <sub>2</sub> Solution Vapor<br>Pressure (mm Hg) | Humidity<br>(H = $(p^*/p^*_w) H_w$<br>(lb H <sub>2</sub> O/MMSCF) |
|---------------------|-----------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------|
| 45                  | 1.222                                         | 44                                                                      | 7.34                                                 | 9.41                                                              |
| 40                  | 1.5                                           | 53                                                                      | 10.39                                                | 13.19                                                             |
| 35                  | 1.857                                         | 60                                                                      | 13.25                                                | 17.00                                                             |
| 30                  | 2.333                                         | 66                                                                      | 16.36                                                | 20.98                                                             |
| 25                  | 3                                             | 71                                                                      | 19.43                                                | 24.92                                                             |
| 20                  | 4                                             | 75                                                                      | 22.23                                                | 28.51                                                             |

Table 5 – Equilibrium Line Calculation for Example 2

Humidity of Saturated Gas at 80°F, 1000 psia Hw = 33.6 lb  $H_2O/MMSCF$ Vapor Pressure of Water at 80°F  $p^*_w = 26.22$  mm Hg

# Example 2

Determine the design of a dehydrator incorporating both trays and a bed section. The same conditions as in Example 1 will be used.

Gas Rate: 4 MMSCF/day Temperature: 80°F Pressure: 1000 psia

### **Gas Humidity**

Inlet (H<sub>i</sub>): 33.6 lb H<sub>2</sub>O/MMSCF Outlet (H<sub>0</sub>): 4.2 lb H<sub>2</sub>O/MMSCF

# Water Removed

117.6 lb H<sub>2</sub>O/day as before Basis: 3.5 lb H<sub>2</sub>O/lb CaCl<sub>2</sub>

(This is the concentration of the brine leaving the last tray. It is specified by the designer.)

### **Tray Calculation**

Figure 4 (on page 21) shows the method. The operating line is drawn connecting the outlet humidity ( $H_0$ ) on the horizontal axis with X = 3.5 lb  $H_2O/lb$  CaCl<sub>2</sub> at the inlet humidity ( $H_i$  = 33.6 lb  $H_2O/MMSCF$ ). The equilibrium line is calculated as shown in Table 5.

Figure 4 shows that six trays are required to do the dehydration job. Actually, five trays are not quite enough and six trays will more than do the job. This means the brine will be more dilute than  $3.5 \text{ lb } \text{H}_2\text{O/lb } \text{CaCl}_2$ .

#### Amount of PELADOW DG Required

As stated in Section II, PELADOW DG calcium chloride contains a minimum of 91 percent CaCl<sub>2</sub>.

 $\frac{117.2 \text{ lb } \text{H}_2\text{O}/\text{day}}{(3.5 \text{ lb } \text{H}_2\text{O}/\text{lb } \text{CaCl}_2) (0.91 \text{ lb } \text{CaCl}_2/\text{lb } \text{PELADOW } \text{DG}} = 36.8 \text{ lb}/\text{day}$ 

# **Bed Height**

Assume 40-day recharge interval Consumption of PELADOW DG in 40 days = 1472 lb Volume of PELADOW DG = 1472 lb = 22.6 ft<sup>3</sup>

The 24" diameter column has a volume of 3.142 ft3/ft, so the height is

 $\frac{22.6 \text{ ft}^3}{3.142 \text{ ft}^3/\text{ft}} + 2 \text{ ft left at recharge} = 9.21 \text{ ft} \\ \approx 9.25 \text{ ft}$ 

# Brine Volume Leaving Dehydrator

The brine concentration is 3.5 lb  $H_2O/lb CaCl_2$  or 22.2 percent CaCl<sub>2</sub>. The density is 1.20 x 8.34 lb/gal = 10.0 lb/gal.

 $\frac{36.8 \text{ lb PELADOW DG/day x } 0.91 \text{ lb CaCl}_2/\text{lb PELADOW DG}}{(0.222 \text{ lb CaCl}_2/\text{lb brine}) (10 \text{ lb brine/gal})} = 15.1 \text{ gal/day}$ 



Figure 4 – Tray Calculation Example 2

\*NOTE THAT THIS IS LB H<sub>2</sub>O/LB CaCl<sub>2</sub>, NOT LB H<sub>2</sub>O/LB <u>PELADOW</u> DG. <u>PELADOW</u> DG IS 91% CaCl<sub>2</sub> MINIMUM.

Example 2 illustrates the design procedure used when any number of trays can be put in to accomplish the desired job. If the number of trays is fixed as in a standard model, or if it is desired to evaluate the performance of an existing column, the procedure is somewhat different.

Now the method becomes a trial-and-error solution. First, an operating line is constructed assuming a certain concentration for the brine leaving the bottom tray. The number of trays is then found by calculation and if it is not the number in the existing column, then the procedure must be repeated.

# VI. Safety Precautions

In general, PELADOW DG calcium chloride and its solutions present the same handling problems as other inorganic chlorides such as sodium chloride.

Contact of solid material with the eye is likely to produce irritation or injury. Effects may include conjunctival irritation with edema, as well as temporary corneal damage.

Single prolonged exposures of solid material to the skin may result in some reddening, while repeated prolonged contacts may cause appreciable irritation and possibly a mild burn.

In 5% and 10% solutions, calcium chloride has only a slight effect on intact skin. Prolonged contact may be expected to result in some slight irritation. Solutions stronger than 10% may, upon prolonged or repeated contact, cause slight to marked irritation, even a burn, depending upon the concentration.

Reasonable handling, care, and cleanliness, plus the use of safety goggles, should be sufficient to prevent injurious contact. Where gross skin contamination with solid or solutions does occur, the affected area should be washed thoroughly with copious quantities of flowing water and a physician summoned.

Considerable heat is released when anhydrous calcium chloride is dissolved in water. Personnel dissolving PELADOW DG or washing out equipment should be careful not to come into contact with any hot solution formed during these operations. Some splashing can occur.

# VII. Disposal of Solutions

When disposing of calcium chloride solutions, care should be taken to prevent large amounts of brine from entering drinking water supplies, or being spread onto plants and shrubbery. Solutions should be disposed of in areas where a buildup of salt concentration will not be objectionable and where allowed by federal, state, and local regulations. When the product being dried constitutes a disposal hazard, disposal of brine used to dry that material should be consistent with disposal procedures for the hazardous product itself.

# VIII. Bibliography

All data not referenced are from the files of The Dow Chemical Company.

- 1. Baker, E.M. and V.H. Waite, *Chem. And Met. Eng.*, 25, 1174 (1921).
- 2. Bukacek, R.F., *Inst. Gas Tech. Res. Bul.*, 8 (1955).
- 3. Data of The Dow Chemical Company.
- 4. Ergun, S., *C.E.P.* 48, No. 2, 89 (1952).
- 5. International Critical Tables, Vol. 2, p. 328 (1928).
- Landsbaum, E.M., W.S. Dodds, and L.F. Stutzman, *I. & E. C.*, 47, No. 1, 101 (1955).

- 7. Lannung, A., Z. Annorg. Allgem. Chem., 228, 1 (1936).
- 8. U.S. Patents 2,804,435; 2,804,840; 2,804,941; 2,916,103; Maloney-Crawford Tank Corporation.
- 9. U.S. Patent 354,177 Maloney-Crawford Corporation.
- 10. Roozeboom, H.W.B., Z. Physik. Chem., 4, 31 (1889).
- 11. Selected literature values from various sources.

# IX. Appendix

| °F                         | 14.7                            | 100                                  | 200                                  | 300                                  | 400                               | 500                             | 600                             | 700                                                                 | 800                      | 900                             | 1000                            |
|----------------------------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|---------------------------------|---------------------------------|---------------------------------------------------------------------|--------------------------|---------------------------------|---------------------------------|
| -40                        | 9.1                             | 1.5                                  | 0.88                                 | 0.66                                 | 0.55                              | 0.49                            | 0.44                            | $\begin{array}{c} 0.41 \\ 0.45 \\ 0.50 \\ 0.55 \\ 0.60 \end{array}$ | 0.39                     | 0.37                            | 0.36                            |
| -38                        | 10.2                            | 1.7                                  | 0.98                                 | 0.73                                 | 0.61                              | 0.54                            | 0.49                            |                                                                     | 0.43                     | 0.41                            | 0.39                            |
| -36                        | 11.5                            | 1.9                                  | 1.1                                  | 0.80                                 | 0.63                              | 0.59                            | 0.54                            |                                                                     | 0.47                     | 0.45                            | 0.43                            |
| -34                        | 12.8                            | 2.1                                  | 1.2                                  | 0.90                                 | 0.74                              | 0.65                            | 0.59                            |                                                                     | 0.51                     | 0.49                            | 0.47                            |
| -32                        | 14.4                            | 2.4                                  | 1.3                                  | 0.99                                 | 0.82                              | 0.72                            | 0.65                            |                                                                     | 0.57                     | 0.54                            | 0.51                            |
| -30                        | 16.0                            | 2.6                                  | 1.5                                  | 1.1                                  | 0.91                              | 0.79                            | 0.72                            | 0.66                                                                | 0.62                     | 0.59                            | 0.56                            |
| -28                        | 17.8                            | 2.9                                  | 1.6                                  | 1.2                                  | 1.0                               | 0.87                            | 0.79                            | 0.72                                                                | 0.68                     | 0.64                            | 0.61                            |
| -26                        | 19.8                            | 3.2                                  | 1.8                                  | 1.3                                  | 1.1                               | 0.96                            | 0.86                            | 0.79                                                                | 0.74                     | 0.70                            | 0.67                            |
| -24                        | 22.0                            | 3.6                                  | 2.0                                  | 1.5                                  | 1.2                               | 1.1                             | 0.95                            | 0.87                                                                | 0.81                     | 0.77                            | 0.73                            |
| -22                        | 24.4                            | 4.0                                  | 2.2                                  | 1.6                                  | 1.3                               | 1.2                             | 1.0                             | 0.95                                                                | 0.89                     | 0.84                            | 0.80                            |
| -20                        | 27.0                            | 4.4                                  | 2.4                                  | 1.8                                  | 1.5                               | 1.3                             | 1.1                             | 1.0                                                                 | 0.97                     | 0.92                            | 0.87                            |
| -18                        | 30.0                            | 4.9                                  | 2.7                                  | 2.0                                  | 1.6                               | 1.4                             | 1.2                             | 1.1                                                                 | 1.1                      | 1.0                             | 0.95                            |
| -16                        | 33.1                            | 5.4                                  | 3.0                                  | 2.2                                  | 1.8                               | 1.5                             | 1.4                             | 1.2                                                                 | 1.2                      | 1.1                             | 1.1                             |
| -14                        | 36.7                            | 5.9                                  | 3.3                                  | 2.4                                  | 1.9                               | 1.7                             | 1.5                             | 1.4                                                                 | 1.3                      | 1.2                             | 1.1                             |
| -12                        | 40.5                            | 6.5                                  | 3.6                                  | 2.6                                  | 2.1                               | 1.8                             | 1.6                             | 1.5                                                                 | 1.4                      | 1.3                             | 1.2                             |
| -10                        | 44.8                            | 7.2                                  | 4.0                                  | 2.9                                  | 2.3                               | 2.0                             | 1.8                             | 1.6                                                                 | 1.5                      | 1.4                             | 1.3                             |
| -8                         | 49.3                            | 7.9                                  | 4.3                                  | 3.1                                  | 2.5                               | 2.2                             | 1.9                             | 1.8                                                                 | 1.6                      | 1.5                             | 1.5                             |
| -6                         | 54.6                            | 8.7                                  | 4.7                                  | 3.4                                  | 2.8                               | 2.4                             | 2.1                             | 1.9                                                                 | 1.8                      | 1.7                             | 1.6                             |
| -4                         | 59.8                            | 9.5                                  | 5.2                                  | 3.7                                  | 3.0                               | 2.6                             | 2.3                             | 2.1                                                                 | 1.9                      | 1.8                             | 1.7                             |
| -2                         | 65.7                            | 10.4                                 | 5.7                                  | 4.1                                  | 3.3                               | 2.8                             | 2.5                             | 2.3                                                                 | 2.1                      | 2.0                             | 1.9                             |
| 0                          | 72.1                            | 11.4                                 | 6.2                                  | 4.5                                  | 3.6                               | 3.1                             | 2.7                             | 2.5                                                                 | 2.3                      | 2.1                             | 2.0                             |
| 2                          | 79.1                            | 12.5                                 | 6.8                                  | 4.9                                  | 3.9                               | 3.3                             | 3.0                             | 2.7                                                                 | 2.5                      | 2.3                             | 2.2                             |
| 4                          | 86.8                            | 13.7                                 | 7.4                                  | 5.3                                  | 4.3                               | 3.6                             | 3.2                             | 2.9                                                                 | 2.7                      | 2.5                             | 2.4                             |
| 6                          | 95.1                            | 15.0                                 | 8.1                                  | 5.8                                  | 4.6                               | 4.0                             | 3.5                             | 3.2                                                                 | 2.9                      | 2.7                             | 2.6                             |
| 8                          | 104                             | 16.4                                 | 8.8                                  | 6.3                                  | 5.1                               | 4.3                             | 3.8                             | 3.4                                                                 | 3.2                      | 3.0                             | 2.8                             |
| 10                         | 114                             | 17.9                                 | 9.6                                  | 6.9                                  | 5.5                               | 4.7                             | 4.1                             | 3.7                                                                 | 3.4                      | 3.2                             | 3.0                             |
| 12                         | 124                             | 19.5                                 | 10.5                                 | 7.5                                  | 6.0                               | 5.1                             | 4.5                             | 4.0                                                                 | 3.7                      | 3.5                             | 3.3                             |
| 14                         | 136                             | 21.3                                 | 11.4                                 | 8.1                                  | 6.5                               | 5.5                             | 4.8                             | 4.5                                                                 | 4.0                      | 3.7                             | 3.5                             |
| 16                         | 148                             | 23.2                                 | 12.4                                 | 8.8                                  | 7.0                               | 5.9                             | 5.2                             | 4.7                                                                 | 4.3                      | 4.0                             | 3.8                             |
| 18                         | 161                             | 25.2                                 | 13.5                                 | 9.6                                  | 7.6                               | 6.4                             | 5.7                             | 5.1                                                                 | 4.7                      | 4.4                             | 4.1                             |
| 20<br>22<br>24<br>26<br>28 | 176<br>192<br>208<br>226<br>246 | 27.4<br>29.8<br>32.4<br>35.1<br>38.1 | 14.6<br>15.9<br>17.2<br>18.7<br>20.2 | 10.4<br>11.3<br>12.2<br>13.2<br>14.3 | 8.2<br>8.9<br>9.7<br>10.5<br>11.3 | 7.0<br>7.5<br>8.2<br>8.8<br>9.5 | 6.1<br>6.6<br>7.2<br>7.7<br>8.3 | 5.5<br>5.9<br>6.4<br>6.9<br>7.5                                     | 5.1<br>5.5<br>6.3<br>6.8 | 4.7<br>5.1<br>5.5<br>5.9<br>6.3 | 4.4<br>4.7<br>5.1<br>5.5<br>5.9 |
| 30                         | 276                             | 41.3                                 | 21.9                                 | 15.4                                 | 12.2                              | 10.3                            | 9.0                             | 8.0                                                                 | 7.4                      | 6.8                             | 6.4                             |
| 32                         | 289                             | 44.7                                 | 23.7                                 | 16.7                                 | 13.2                              | 11.1                            | 9.7                             | 8.7                                                                 | 7.9                      | 7.3                             | 6.9                             |
| 34                         | 313                             | 48.4                                 | 25.6                                 | 18.0                                 | 14.2                              | 11.9                            | 10.4                            | 9.3                                                                 | 8.5                      | 7.9                             | 7.4                             |
| 36                         | 339                             | 52.4                                 | 27.7                                 | 19.4                                 | 15.3                              | 12.9                            | 11.2                            | 10.0                                                                | 9.2                      | 8.5                             | 7.9                             |
| 38                         | 367                             | 56.6                                 | 29.9                                 | 20.1                                 | 16.5                              | 13.9                            | 12.1                            | 10.8                                                                | 9.8                      | 9.1                             | 8.5                             |
| 40                         | 396                             | 61.1                                 | 32.2                                 | 22.6                                 | 17.8                              | 14.9                            | 13.0                            | 11.6                                                                | 10.6                     | 9.8                             | 9.1                             |
| 42                         | 428                             | 66.0                                 | 34.8                                 | 24.4                                 | 19.2                              | 16.0                            | 13.9                            | 12.5                                                                | 11.3                     | 10.5                            | 9.8                             |
| 44                         | 462                             | 71.2                                 | 37.5                                 | 26.2                                 | 20.6                              | 17.2                            | 15.0                            | 13.4                                                                | 12.2                     | 11.2                            | 10.5                            |
| 46                         | 499                             | 76.7                                 | 40.3                                 | 28.2                                 | 22.2                              | 18.5                            | 16.1                            | 14.4                                                                | 13.1                     | 12.0                            | 11.2                            |
| 48                         | 538                             | 82.6                                 | 43.4                                 | 30.3                                 | 23.8                              | 19.9                            | 17.3                            | 15.4                                                                | 14.0                     | 12.9                            | 12.0                            |
| 50                         | 580                             | 89.0                                 | 46.7                                 | 32.6                                 | 25.6                              | 21.3                            | 18.5                            | 16.5                                                                | 15.0                     | 13.8                            | 12.9                            |
| 52                         | 624                             | 95.7                                 | 50.2                                 | 35.0                                 | 27.4                              | 22.9                            | 19.8                            | 17.7                                                                | 16.1                     | 14.8                            | 13.8                            |
| 54                         | 672                             | 103                                  | 54.0                                 | 37.6                                 | 29.4                              | 24.5                            | 21.3                            | 18.9                                                                | 17.2                     | 15.8                            | 14.7                            |
| 56                         | 721                             | 111                                  | 57.9                                 | 40.3                                 | 31.5                              | 36.7                            | 22.8                            | 20.3                                                                | 18.3                     | 16.9                            | 15.7                            |
| 58                         | 776                             | 119                                  | 62.1                                 | 43.2                                 | 33.8                              | 28.1                            | 24.4                            | 21.7                                                                | 19.6                     | 18.0                            | 16.8                            |
| 60                         | 834                             | 128                                  | 66.6                                 | 46.3                                 | 36.2                              | 30.1                            | 26.1                            | 23.2                                                                | 21.0                     | 19.3                            | 17.9                            |
| 62                         | 895                             | 137                                  | 71.4                                 | 49.6                                 | 38.7                              | 32.2                            | 27.9                            | 24.7                                                                | 22.4                     | 20.6                            | 19.1                            |
| 64                         | 960                             | 147                                  | 76.5                                 | 53.1                                 | 41.4                              | 34.4                            | 29.8                            | 26.4                                                                | 23.9                     | 22.0                            | 20.4                            |
| 66                         | 1030                            | 157                                  | 81.8                                 | 56.8                                 | 44.3                              | 36.8                            | 31.8                            | 28.2                                                                | 25.5                     | 23.4                            | 21.8                            |
| 68                         | 1100                            | 168                                  | 87.6                                 | 60.7                                 | 47.3                              | 39.3                            | 33.9                            | 30.1                                                                | 27.2                     | 25.0                            | 23.2                            |
| 70                         | 1180                            | 180                                  | 93.7                                 | 65.0                                 | 50.6                              | 42.0                            | 36.2                            | 32.1                                                                | 29.0                     | 26.6                            | 24.7                            |
| 72                         | 1260                            | 192                                  | 100                                  | 63.4                                 | 54.0                              | 44.8                            | 38.6                            | 34.2                                                                | 30.9                     | 28.4                            | 26.3                            |
| 74                         | 1350                            | 206                                  | 107                                  | 74.0                                 | 57.6                              | 47.7                            | 41.1                            | 36.4                                                                | 32.9                     | 30.2                            | 28.0                            |
| 76                         | 1440                            | 220                                  | 114                                  | 79.0                                 | 61.4                              | 50.9                            | 43.8                            | 38.8                                                                | 35.0                     | 32.1                            | 29.8                            |
| 78                         | 1540                            | 235                                  | 122                                  | 84.2                                 | 65.5                              | 54.2                            | 46.7                            | 41.3                                                                | 37.3                     | 34.2                            | 31.7                            |
| 80                         | 1650                            | 250                                  | 130                                  | 89.8                                 | 69.7                              | 57.7                            | 49.7                            | 44.0                                                                | 39.7                     | 36.3                            | 33.6                            |
| 82                         | 1760                            | 267                                  | 138                                  | 95.6                                 | 74.2                              | 61.4                            | 52.8                            | 46.7                                                                | 42.1                     | 38.6                            | 35.7                            |
| 84                         | 1870                            | 285                                  | 148                                  | 102                                  | 79.0                              | 65.3                            | 56.2                            | 49.7                                                                | 44.8                     | 41.0                            | 37.9                            |
| 86                         | 2000                            | 303                                  | 157                                  | 108                                  | 84.1                              | 69.5                            | 59.7                            | 52.8                                                                | 47.6                     | 43.5                            | 40.3                            |
| 88                         | 2130                            | 323                                  | 167                                  | 115                                  | 89.4                              | 73.8                            | 63.5                            | 56.1                                                                | 50.5                     | 46.2                            | 42.7                            |
| 90                         | 2270                            | 344                                  | 178                                  | 123                                  | 95.0                              | 78.5                            | 67.4                            | 59.5                                                                | 53.6                     | 49.0                            | 45.3                            |
| 92                         | 2410                            | 366                                  | 189                                  | 130                                  | 101                               | 83.3                            | 71.5                            | 63.1                                                                | 56.8                     | 51.9                            | 47.8                            |
| 94                         | 2570                            | 389                                  | 201                                  | 138                                  | 107                               | 86.4                            | 75.9                            | 67.0                                                                | 60.3                     | 55.0                            | 50.6                            |
| 96                         | 2730                            | 413                                  | 214                                  | 147                                  | 114                               | 93.8                            | 80.5                            | 71.0                                                                | 63.9                     | 58.3                            | 53.9                            |
| 98                         | 2900                            | 439                                  | 227                                  | 156                                  | 121                               | 99.5                            | 85.3                            | 75.2                                                                | 67.6                     | 61.8                            | 57.0                            |

# Table 6 – Equilibrium Moisture Content of Natural Gases Above the Critical Temperature 2Pounds per MMSCF (14.7 psia, 60°F)

| °F                              | 14.7  | 100                          | 200                                  | 300                                  | 400                                  | 500                                  | 600                                  | 700                                  | 800                                  | 900                                  | 1000                               | 1500                            | 2000                            | 2500                            | 3000                            | 3500                            | 4000                            | 4500                            | 5000                            |
|---------------------------------|-------|------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| 100                             | 3080  | 466                          | 241                                  | 166                                  | 128                                  | 105                                  | 90.4                                 | 79.7                                 | 71.6                                 | 65.4                                 | 60.4                               | 45.4                            | 37.9                            | 33.3                            | 30.3                            | 28.2                            | 26.6                            | 25.3                            | 24.3                            |
| 102                             | 3270  | 495                          | 256                                  | 176                                  | 136                                  | 112                                  | 95.8                                 | 84.4                                 | 75.9                                 | 69.2                                 | 63.9                               | 74.9                            | 40.0                            | 35.5                            | 32.0                            | 29.7                            | 28.0                            | 26.6                            | 25.6                            |
| 104                             | 3470  | 525                          | 271                                  | 186                                  | 144                                  | 118                                  | 101                                  | 89.3                                 | 80.2                                 | 73.1                                 | 67.5                               | 50.6                            | 42.1                            | 37.0                            | 33.6                            | 31.2                            | 29.4                            | 28.0                            | 26.9                            |
| 106                             | 3680  | 557                          | 287                                  | 197                                  | 152                                  | 125                                  | 107                                  | 94.5                                 | 84.9                                 | 77.4                                 | 71.4                               | 53.4                            | 44.5                            | 39.1                            | 35.5                            | 32.9                            | 31.0                            | 29.5                            | 28.3                            |
| 108                             | 3900  | 589                          | 304                                  | 209                                  | 161                                  | 133                                  | 114                                  | 99.9                                 | 89.7                                 | 81.7                                 | 75.4                               | 56.4                            | 46.9                            | 41.1                            | 37.3                            | 34.6                            | 32.6                            | 31.0                            | 29.7                            |
| 110                             | 4130  | 624                          | 322                                  | 221                                  | 170                                  | 140                                  | 120                                  | 106                                  | 94.7                                 | 86.3                                 | 79.6                               | 59.4                            | 49.4                            | 43.3                            | 39.3                            | 36.4                            | 34.2                            | 32.5                            | 31.2                            |
| 112                             | 4380  | 661                          | 341                                  | 234                                  | 180                                  | 148                                  | 127                                  | 112                                  | 100                                  | 91.2                                 | 84.1                               | 62.7                            | 52.1                            | 45.6                            | 41.4                            | 38.3                            | 36.0                            | 34.2                            | 32.8                            |
| 114                             | 4640  | 700                          | 360                                  | 247                                  | 191                                  | 157                                  | 134                                  | 118                                  | 106                                  | 96.2                                 | 88.7                               | 66.1                            | 54.8                            | 48.0                            | 43.4                            | 40.2                            | 37.8                            | 35.9                            | 34.4                            |
| 116                             | 4910  | 740                          | 381                                  | 261                                  | 201                                  | 165                                  | 142                                  | 124                                  | 112                                  | 102                                  | 93.6                               | 69.7                            | 57.7                            | 50.5                            | 45.7                            | 42.3                            | 39.8                            | 37.8                            | 36.2                            |
| 118                             | 5190  | 783                          | 403                                  | 276                                  | 213                                  | 175                                  | 149                                  | 131                                  | 118                                  | 107                                  | 98.7                               | 73.4                            | 60.7                            | 53.1                            | 48.0                            | 44.4                            | 41.7                            | 39.6                            | 37.9                            |
| 120                             | 5490  | 828                          | 426                                  | 292                                  | 225                                  | 185                                  | 158                                  | 139                                  | 124                                  | 113                                  | 104                                | 77.3                            | 63.9                            | 55.9                            | 50.5                            | 46.7                            | 43.8                            | 41.6                            | 39.8                            |
| 122                             | 5800  | 874                          | 449                                  | 308                                  | 237                                  | 195                                  | 166                                  | 146                                  | 131                                  | 119                                  | 110                                | 81.3                            | 67.2                            | 58.7                            | 53.0                            | 49.0                            | 45.9                            | 43.6                            | 41.7                            |
| 124                             | 6130  | 923                          | 474                                  | 325                                  | 250                                  | 205                                  | 175                                  | 154                                  | 138                                  | 125                                  | 116                                | 85.6                            | 70.7                            | 61.7                            | 55.7                            | 51.4                            | 48.2                            | 45.7                            | 43.7                            |
| 126                             | 6470  | 974                          | 500                                  | 343                                  | 264                                  | 216                                  | 185                                  | 162                                  | 145                                  | 132                                  | 122                                | 89.9                            | 74.2                            | 64.7                            | 58.4                            | 53.9                            | 50.5                            | 47.8                            | 45.7                            |
| 128                             | 6830  | 1030                         | 528                                  | 361                                  | 278                                  | 228                                  | 195                                  | 171                                  | 153                                  | 139                                  | 128                                | 94.7                            | 78.0                            | 68.0                            | 61.3                            | 56.6                            | 53.0                            | 50.2                            | 48.0                            |
| 130                             | 7240  | 1090                         | 559                                  | 382                                  | 294                                  | 241                                  | 206                                  | 181                                  | 162                                  | 147                                  | 135                                | 99.8                            | 82.1                            | 71.5                            | 64.4                            | 59.4                            | 55.6                            | 52.6                            | 50.3                            |
| 132                             | 7580  | 1140                         | 585                                  | 400                                  | 308                                  | 252                                  | 215                                  | 189                                  | 169                                  | 154                                  | 141                                | 104                             | 85.8                            | 74.7                            | 67.3                            | 62.0                            | 58.1                            | 55.0                            | 52.5                            |
| 134                             | 7990  | 1200                         | 617                                  | 422                                  | 324                                  | 266                                  | 227                                  | 199                                  | 178                                  | 162                                  | 149                                | 110                             | 90.1                            | 78.4                            | 70.6                            | 65.0                            | 60.9                            | 57.6                            | 55.0                            |
| 136                             | 8470  | 1270                         | 653                                  | 446                                  | 343                                  | 281                                  | 240                                  | 210                                  | 188                                  | 171                                  | 157                                | 116                             | 94.9                            | 82.5                            | 74.2                            | 68.3                            | 63.9                            | 60.3                            | 57.7                            |
| 138                             | 8880  | 1330                         | 684                                  | 468                                  | 359                                  | 294                                  | 251                                  | 220                                  | 197                                  | 179                                  | 164                                | 121                             | 99.2                            | 86.2                            | 77.5                            | 71.3                            | 66.7                            | 63.1                            | 60.2                            |
| 140                             | 9360  | 1410                         | 721                                  | 492                                  | 378                                  | 310                                  | 264                                  | 231                                  | 207                                  | 188                                  | 173                                | 127                             | 104                             | 90.4                            | 81.3                            | 74.7                            | 69.9                            | 66.0                            | 63.0                            |
| 142                             | 9830  | 1480                         | 757                                  | 517                                  | 397                                  | 325                                  | 277                                  | 243                                  | 217                                  | 197                                  | 181                                | 133                             | 109                             | 94.6                            | 85.0                            | 78.1                            | 73.0                            | 69.0                            | 65.8                            |
| 144                             | 10400 | 1560                         | 799                                  | 545                                  | 419                                  | 343                                  | 292                                  | 256                                  | 229                                  | 207                                  | 191                                | 140                             | 115                             | 99.3                            | 89.2                            | 81.9                            | 76.5                            | 72.3                            | 68.9                            |
| 146                             | 10900 | 1640                         | 840                                  | 573                                  | 440                                  | 360                                  | 307                                  | 269                                  | 240                                  | 218                                  | 200                                | 147                             | 120                             | 104                             | 93.0                            | 85.7                            | 80.0                            | 75.6                            | 72.0                            |
| 148                             | 11500 | 1720                         | 882                                  | 602                                  | 462                                  | 378                                  | 322                                  | 282                                  | 252                                  | 229                                  | 210                                | 154                             | 126                             | 109                             | 97.6                            | 89.6                            | 83.6                            | 78.9                            | 75.6                            |
| 150                             | 12100 | 1810                         | 928                                  | 633                                  | 486                                  | 397                                  | 338                                  | 296                                  | 264                                  | 240                                  | 220                                | 161                             | 132                             | 114                             | 102                             | 93.8                            | 87.5                            | 82.5                            | 78.6                            |
| 152                             | 12700 | 1910                         | 975                                  | 665                                  | 510                                  | 417                                  | 355                                  | 311                                  | 277                                  | 252                                  | 231                                | 169                             | 138                             | 119                             | 107                             | 98.0                            | 91.4                            | 86.2                            | 82.1                            |
| 154                             | 13300 | 2000                         | 1020                                 | 697                                  | 534                                  | 437                                  | 372                                  | 325                                  | 290                                  | 263                                  | 242                                | 177                             | 144                             | 125                             | 112                             | 102                             | 95.4                            | 89.9                            | 85.6                            |
| 156                             | 14000 | 2100                         | 1070                                 | 732                                  | 561                                  | 458                                  | 390                                  | 341                                  | 305                                  | 276                                  | 253                                | 185                             | 151                             | 130                             | 117                             | 107                             | 100                             | 94.0                            | 89.4                            |
| 158                             | 14700 | 2200                         | 1130                                 | 767                                  | 588                                  | 480                                  | 409                                  | 357                                  | 319                                  | 289                                  | 265                                | 194                             | 158                             | 136                             | 122                             | 112                             | 104                             | 98.0                            | 93.2                            |
| 160                             | 15400 | 2300                         | 1180                                 | 802                                  | 615                                  | 502                                  | 427                                  | 374                                  | 333                                  | 302                                  | 277                                | 202                             | 165                             | 142                             | 127                             | 116                             | 108                             | 102                             | 97.1                            |
| 162                             |       | 2410                         | 1230                                 | 841                                  | 644                                  | 526                                  | 447                                  | 391                                  | 349                                  | 316                                  | 290                                | 211                             | 172                             | 149                             | 133                             | 122                             | 113                             | 107                             | 101                             |
| 164                             |       | 2540                         | 1300                                 | 883                                  | 676                                  | 552                                  | 459                                  | 410                                  | 366                                  | 332                                  | 304                                | 221                             | 180                             | 155                             | 139                             | 127                             | 118                             | 111                             | 106                             |
| 166                             |       | 2650                         | 1350                                 | 922                                  | 706                                  | 570                                  | 490                                  | 428                                  | 382                                  | 346                                  | 317                                | 231                             | 188                             | 162                             | 145                             | 132                             | 123                             | 116                             | 110                             |
| 168                             |       | 2780                         | 1420                                 | 967                                  | 740                                  | 604                                  | 514                                  | 449                                  | 400                                  | 363                                  | 332                                | 242                             | 196                             | 169                             | 151                             | 138                             | 128                             | 121                             | 115                             |
| 170                             |       | 2910                         | 1490                                 | 1010                                 | 775                                  | 633                                  | 538                                  | 470                                  | 419                                  | 379                                  | 348                                | 253                             | 205                             | 177                             | 158                             | 144                             | 134                             | 126                             | 120                             |
| 172                             |       | 3040                         | 1550                                 | 1050                                 | 810                                  | 661                                  | 562                                  | 491                                  | 437                                  | 396                                  | 363                                | 263                             | 214                             | 184                             | 164                             | 150                             | 139                             | 131                             | 124                             |
| 174                             |       | 3190                         | 1630                                 | 1110                                 | 847                                  | 691                                  | 587                                  | 513                                  | 457                                  | 414                                  | 379                                | 275                             | 223                             | 192                             | 171                             | 156                             | 145                             | 136                             | 130                             |
| 176                             |       | 3330                         | 1700                                 | 1160                                 | 885                                  | 722                                  | 613                                  | 535                                  | 477                                  | 432                                  | 396                                | 287                             | 233                             | 200                             | 178                             | 163                             | 151                             | 142                             | 135                             |
| 178                             |       | 3480                         | 1780                                 | 1210                                 | 925                                  | 754                                  | 640                                  | 559                                  | 498                                  | 451                                  | 413                                | 299                             | 243                             | 208                             | 186                             | 169                             | 157                             | 148                             | 140                             |
| 180                             |       | 3640                         | 1860                                 | 1260                                 | 967                                  | 789                                  | 670                                  | 585                                  | 521                                  | 471                                  | 432                                | 313                             | 253                             | 217                             | 194                             | 177                             | 164                             | 154                             | 146                             |
| 182                             |       | 3800                         | 1940                                 | 1320                                 | 1010                                 | 821                                  | 697                                  | 609                                  | 542                                  | 491                                  | 449                                | 325                             | 263                             | 226                             | 201                             | 184                             | 170                             | 160                             | 152                             |
| 184                             |       | 3980                         | 2030                                 | 1380                                 | 1060                                 | 860                                  | 730                                  | 637                                  | 567                                  | 513                                  | 470                                | 340                             | 275                             | 236                             | 210                             | 191                             | 177                             | 167                             | 158                             |
| 186                             |       | 4150                         | 2120                                 | 1440                                 | 1100                                 | 897                                  | 761                                  | 664                                  | 591                                  | 535                                  | 490                                | 354                             | 287                             | 245                             | 218                             | 199                             | 184                             | 173                             | 164                             |
| 188                             |       | 4340                         | 2210                                 | 1500                                 | 1150                                 | 936                                  | 794                                  | 693                                  | 617                                  | 558                                  | 511                                | 369                             | 298                             | 256                             | 227                             | 207                             | 192                             | 180                             | 171                             |
| 190                             |       | 4520                         | 2300                                 | 1570                                 | 1200                                 | 974                                  | 827                                  | 721                                  | 642                                  | 581                                  | 531                                | 384                             | 310                             | 266                             | 236                             | 215                             | 199                             | 187                             | 177                             |
| 192                             |       | 4720                         | 2410                                 | 1630                                 | 1250                                 | 1020                                 | 863                                  | 753                                  | 670                                  | 606                                  | 554                                | 400                             | 323                             | 277                             | 246                             | 224                             | 207                             | 194                             | 184                             |
| 194                             |       | 4920                         | 2510                                 | 1700                                 | 1300                                 | 1060                                 | 900                                  | 785                                  | 698                                  | 631                                  | 578                                | 417                             | 336                             | 288                             | 256                             | 233                             | 215                             | 202                             | 191                             |
| 196                             |       | 5140                         | 2620                                 | 1780                                 | 1360                                 | 1110                                 | 938                                  | 818                                  | 728                                  | 658                                  | 602                                | 434                             | 350                             | 299                             | 266                             | 242                             | 224                             | 210                             | 199                             |
| 198                             |       | 5350                         | 2730                                 | 1850                                 | 1410                                 | 1150                                 | 976                                  | 851                                  | 757                                  | 684                                  | 626                                | 451                             | 364                             | 311                             | 276                             | 251                             | 232                             | 218                             | 206                             |
| 200<br>202<br>204<br>206<br>208 |       | 5570<br>5810<br>6050<br>6310 | 2840<br>2960<br>3080<br>3210<br>3340 | 1930<br>2010<br>2090<br>2180<br>2270 | 1470<br>1530<br>1600<br>1660<br>1730 | 1200<br>1250<br>1300<br>1350<br>1400 | 1020<br>1060<br>1100<br>1150<br>1190 | 885<br>922<br>960<br>999<br>1040     | 788<br>821<br>854<br>889<br>924      | 712<br>741<br>771<br>803<br>835      | 651<br>678<br>705<br>734<br>763    | 469<br>488<br>507<br>528<br>548 | 378<br>393<br>408<br>423<br>441 | 323<br>336<br>349<br>363<br>377 | 286<br>298<br>309<br>321<br>334 | 260<br>271<br>281<br>292<br>303 | 241<br>251<br>260<br>270<br>280 | 226<br>235<br>243<br>253<br>262 | 213<br>222<br>230<br>238<br>248 |
| 210<br>212<br>214<br>216<br>218 |       |                              | 3480<br>3620<br>3760<br>3910<br>4060 | 2360<br>2450<br>2550<br>2650<br>2760 | 1800<br>1870<br>1950<br>2020<br>2100 | 1460<br>1520<br>1580<br>1640<br>1710 | 1240<br>1290<br>1340<br>1390<br>1450 | 1080<br>1120<br>1160<br>1210<br>1260 | 961<br>999<br>1040<br>1080<br>1120   | 858<br>902<br>937<br>973<br>1010     | 793<br>824<br>856<br>889<br>924    | 569<br>591<br>614<br>637<br>662 | 458<br>475<br>493<br>512<br>532 | 390<br>405<br>420<br>436<br>453 | 346<br>359<br>372<br>386<br>401 | 314<br>325<br>337<br>350<br>363 | 290<br>301<br>312<br>323<br>335 | 271<br>281<br>291<br>302<br>313 | 256<br>266<br>275<br>285<br>296 |
| 220<br>222<br>224<br>226<br>228 |       |                              | 4220<br>4390<br>4560<br>4730<br>4910 | 2860<br>2980<br>3090<br>3200<br>3330 | 2180<br>2270<br>2350<br>2440<br>2540 | 1780<br>1840<br>1910<br>1990<br>2060 | 1500<br>1560<br>1520<br>1680<br>1750 | 1310<br>1360<br>1410<br>1460<br>1520 | 1160<br>1200<br>1250<br>1300<br>1350 | 1050<br>1090<br>1130<br>1170<br>1220 | 959<br>996<br>1030<br>1070<br>1110 | 687<br>713<br>739<br>767<br>795 | 551<br>572<br>593<br>615<br>637 | 469<br>487<br>504<br>523<br>542 | 415<br>431<br>446<br>462<br>479 | 376<br>390<br>404<br>418<br>433 | 347<br>360<br>372<br>386<br>400 | 324<br>336<br>348<br>360<br>373 | 306<br>318<br>328<br>340<br>352 |
| 230<br>240<br>250               |       |                              | 5100                                 | 3460<br>4160                         | 2630<br>3170<br>3770                 | 2140<br>2570<br>3060                 | 1810<br>2180<br>2590                 | 1580<br>1890<br>2250                 | 1400<br>1680<br>2000                 | 1260<br>1510<br>1800                 | 1150<br>1380<br>1640               | 824<br>985<br>1170              | 660<br>787<br>932               | 561<br>658<br>790               | 495<br>589<br>695               | 448<br>532<br>628               | 413<br>490<br>577               | 385<br>456<br>538               | 363<br>430<br>506               |

# Table 6 – Equilibrium Moisture Content of Natural Gases Above the Critical Temperature (Continued)Pounds per MMSCF (14.7 psia, 60°F)



Figure 5 – Dühring Plot For  $CaCl_2$  Solutions <sup>1, 3</sup>



Figure 6 – Vapor Pressures of CaCl<sub>2</sub> Hydrates <sup>3, 7, 9</sup>



Figure 7 – Water Content of Natural Gas in Equilibrium with  $CaCl_2 \bullet H_2O$ 



Figure 8 – Water Content of Natural Gas in Equilibrium with CaCl\_2  $\bullet$  2H\_2O



Figure 9 – Water Content of Natural Gas in Equilibrium with CaCl<sub>2</sub>•4H<sub>2</sub>O



# Figure 10 – Water Content of Natural Gas in Equilibrium with $CaCl_2 \bullet 6H_2O$



Figure 11 – Water Content of Saturated Air <sup>6</sup>

# The Next Step

As you can see, gas dehydration with PELADOW DG calcium chloride offers many advantages under the right conditions. Determining whether a system using PELADOW DG is a good solution for you is easy, too. Just call 1-800-447-4369 and we'll put you in touch with a dehydration specialist. For more information call **1-800-447-4369** In Canada, call **1-800-363-6250** 

**NOTICE:** No freedom from any patent owned by Seller or others is to be inferred. Because use conditions and applicable laws may differ from one location to another and may change with time, Customer is responsible for determining whether products and the information in this document are appropriate for Customer's use and for ensuring that Customer's workplace and disposal practices are in compliance with applicable laws and other governmental enactments. Seller assumes no obligation or liability for the information in this document. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

Published May 1998.



